Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response—Note of Caution for In vivo Infection Experiments
نویسندگان
چکیده
Whether mice are an appropriate model for S. aureus infection and vaccination studies is a matter of debate, because they are not considered as natural hosts of S. aureus. We previously identified a mouse-adapted S. aureus strain, which caused infections in laboratory mice. This raised the question whether laboratory mice are commonly colonized with S. aureus and whether this might impact on infection experiments. Publicly available health reports from commercial vendors revealed that S. aureus colonization is rather frequent, with rates as high as 21% among specific-pathogen-free mice. In animal facilities, S. aureus was readily transmitted from parents to offspring, which became persistently colonized. Among 99 murine S. aureus isolates from Charles River Laboratories half belonged to the lineage CC88 (54.5%), followed by CC15, CC5, CC188, and CC8. A comparison of human and murine S. aureus isolates revealed features of host adaptation. In detail, murine strains lacked hlb-converting phages and superantigen-encoding mobile genetic elements, and were frequently ampicillin-sensitive. Moreover, murine CC88 isolates coagulated mouse plasma faster than human CC88 isolates. Importantly, S. aureus colonization clearly primed the murine immune system, inducing a systemic IgG response specific for numerous S. aureus proteins, including several vaccine candidates. Phospholipase C emerged as a promising test antigen for monitoring S. aureus colonization in laboratory mice. In conclusion, laboratory mice are natural hosts of S. aureus and therefore, could provide better infection models than previously assumed. Pre-exposure to the bacteria is a possible confounder in S. aureus infection and vaccination studies and should be monitored.
منابع مشابه
Nasal Colonization Rate of Community and Hospital Acquired Methicillin Resistant Staphylococcus Aureus in Hospitalized Children
Background & Aims: Prevalence of community and hospital acquired methicillin-resistant Staphylococcus aureus (MRSA) infection is increasing. The primary reservoir is the anterior nares; and nasal carriage is a risk factor for infection in a variety of populations. Infection due to hospital-acquired colonization is different from community acquired in clinical manifestations and antibiotics susc...
متن کاملIn-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus
Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...
متن کاملCurcumin-loaded Chitosan Tripolyphosphate Nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo
Background: Curcumin as a yellow natural compound extracted from turmeric root is known it as an antibacterial agent. One of the nanoparticles ability is to decrease the defects of usual drug delivery systems. Chitosan is a low toxic, biodegradable, biocompatible and safe polymer which is used in production of nanoparticles. Nanoparticles like chitosan-tripolyphosphate (TPP) are able to increas...
متن کاملSuperantigen-Producing Staphylococcus aureus Elicits Systemic Immune Activation in a Murine Wound Colonization Model
Staphylococcus aureus, the most common cause of wound infection, produces several exotoxins, including superantigens (SAgs). SAgs are the potent activators of the immune system. Given this unique property, we hypothesized that SAgs produced by S. aureus in wounds would have local, as well as systemic immunologic effects. We tested our hypothesis using a novel staphylococcal skin wound infection...
متن کاملIn-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus
Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...
متن کامل